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Abstract: In this paper Very large scale integration architecture for 
inversion is presented. This architecture is scalable with respect to 
the throughput rate. The scalability is achieved by applying time 
sharing technique. Time sharing systems are designed to allow 
several operations to execute simultaneously. This approach leads to 
a small silicon area in comparison with several inversion 
implementations published in the past. 
 

INTRODUCTION 

In very-large-scale integration (VLSI) technology, 
commercial interest in integrating RS decoders in high-
volume applications is steadily increasing.[1] For example, it 
is highly desirable to have an efficient and scalable RS 
decoder architecture that covers different requirements 
according to the digital video broadcast (DVB) standard for 
terrestrial, satellite, or cable transmission. Furthermore, this 
architecture should be suitable for requirements concerning 
fast asynchronous transfer mode (ATM) network applications 
with data rates as specified by the synchronous digital 
hierarchy standard. While data rates according to DVB 
applications below 80 Mbit/s vary depending on the channel 
bandwidth and the modulation scheme, the data rates for fast 
ATM networks are specified by 155 Mbit/s, 622 Mbit/s, or 
even higher.[2,3] 

A. BASICS OF GALOIS FIELD: 

Galois Field inversion hardware can be used for Reed-
Solomon encode and decode functions. To understand the 
relevance of the Galois Field inversion hardware, it is 
necessary to first define some mathematical terms. Two kinds 
of number systems that are common in algorithm development 
are integers and real numbers. For integers the addition, 
subtraction and multiplication operations can be performed. 
Division can also be performed if a non-zero remainder can be 
allowed. For real numbers all four of these operations can be 
performed, even if there is a non-zero remainder for division 
operations.[4,5] 
Real numbers can belong to a mathematical structure called a 
field. A field consists of a set of data elements along with 
addition, subtraction, multiplication, and division. A field of 
integers can also be created if modulo arithmetic is performed. 
An example is doing arithmetic using integers modulo-2. 
Perform the operations using normal integer arithmetic and 
then take the result modulo-2. Fig. 1 describes addition, 
subtraction and multiplication modulo-2.  
 

 
Fig. 1.  Modulo-2 arithmetic 

 
Note that addition and subtraction results are the same, and in 
fact are equivalent to the XOR (exclusive OR) operation in 
binary. Also, the multiplication result is equal to the AND 
operation in binary. These properties are unique to modulo-2 
arithmetic, but modulo-2 arithmetic is used extensively in 
error correction coding. Another more general property is that 
division by any non-zero element is now defined. Division can 
always be performed if every element other than zero has a 
multiplicative inverse,  
i.e. x. x–1 = 1. 

 
P(x) denotes the primitive polynomial of GF(23),P(x)=x3+x+1 
A finite field division (FFD) can be decomposed into an 
inversion(FFI) and a multiplication. Inversion architecture is 
based on the Euclidean algorithm(EA). The least significant 
coefficients of c(x) results at the output Y0 of the processing 
element in the mth column from the right 
Mapping field element in terms of basis element for GF (2m) 
with f(x) = 1+ x + x3 as irreducible primitive polynomial. 
 

Field elements 
Basic elements 

x0                x1             x2 
0 0 0 0
α0 1 0 0 
α1 0 1 0 
α2 0 0 1 
α3 1 1 0 
α4 0 1 1 
α5 1 1 1 
α6 1 0 1 
α7 1 0 0 

Table 1.1: Mapping of Basic Elements GF (23) with 
f(x) = 1+ x + x3 

 
B. EUCLIDEAN ALGORITHM 

Among important arithmetic operations in finite field, 
inversion and division have been identified as the most 
complicated and time-consuming tasks. In previous 
architecture, there are two disadvantages which are removed 
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in this circuit. The disadvantages are given as the time step 
required in the computation depends on the parameter m, the 
size of the field and the second one is the number of clock 
cycles required in each computation in not a constant value. 
Assuming element A and nonzero element B to be two 
arbitrary element in finite field GF (2m), the conventional 
method to perform division A/B  is to evaluate the inversion 
of element B first, then product of A.B-1. Hence division is 
performed in two steps.[6]  
 
A finite field GF (2m) contains 2m elements that are generated 
by a primitive polynomial of degree m with coefficients over 
GF(2),  
 
F(x) = xm + fm-1x

m-1 + fm-2x
m-2 + ….. + f1x + 1       (1)                                                 

 
By means of the polynomial representation, an element in GF 
(2m) may be represented by a polynomial of degree m-1 or less 
with coefficients over GF (2). Let   
 
B(x) = bm-1x

m-1 + ….. + b1x +b0                     (2)                                                             
Be a nonzero element of the field GF (2m). Suppose that C(x) 
is the inverse element of element B(x).  
C(x) = Cm-1x

m-1+ …+ c1x+c0                    (3)                                                                                   
Then they must satisfy the following relation: 
 
B(x) · C(x) ≡ 1 {modF(x)}                             (4)                                                                                      
or equivalently, 
 
B(x)·C(x)+F(x)·D(x)=1                                       (5)                                                                                  
Since polynomial F(x) is irreducible, the gcd of F(x) and B(x) 
is 1. We therefore obtain the inverse element C(x) by applying 
Euclidean algorithm as mentioned below. 
 
 
Euclidean algorithm for Inversion 
   begin 
      S:=B;  T:=F;   {  deg F(x) > deg B(x)  }2 
      U:=1;  V:=0; 
      while ( S ≠ 0 ) 
      begin 
         Q:=T div S; 
         temp:= T - Q . S;  T:=S;   S:= temp; 
         temp:= T - Q . U;  V:=U;  U:= temp; 
       end 
      C:=V; 
end 
 
The solution is V(x) that is the inverse of element of B(x). The 
following properties are true, no matter what B(x) is: 
 

1. As the initial value of U(x) is 1, the polynomial U(x) 
equals the polynomial F(x) in the last row. Hence the 
degree of U(x) is m. 
 

2. As the gcd of F(x) and B(x) is 1, the condition S=1 
occurs during the iteration process. As S(x) = 1, the 
polynomial U(x) equals B(x)-1. This characteristic can 
be applied as an exit condition from the loop of 
Euclidean’s algorithm instead of S(x) = 0. The 

module operation is not performed during the 
iteration process because the degree of both U(x) and 
V(x) are m-1 at most. 

 
Herein, each dividend is multiplied deg V(x) times with the 
leading coefficient of the divisor in order to avoid finite field 
inversions.[7] 
 
For explanation of procedure of Euclidean algorithm for 
inversion for an example which is mention as below. 
 
For example: F(x) = x4+x+1, B(x) = x2+1. 
 

S(x) T(x) U(x) V(x) 

x2+1 x4+x+1 1 0 

x x2+1 x2+1 1 

1 x x3+x+1 x2+1

0 1 x4+x+1 x3+x+1 

 
Table 1.2: Procedure for Euclidean algorithm 

 
 

CONCLUSION: 
Based on Euclidean algorithm several simple but efficient 
VLSI  architecture for computing inversion over GF(2m) can 
be designed.  Both computation speed and circuit complexity 
of the presented inversion can be improved by comparing with 
existing inversion algorithm 
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